

III CONGRESSO NAZIONALE ANFeA

Roma 27-28 Novembre 2015 Università Roma La Sapienza Dipartimento di Scienze di Base e Applicate per l'Ingegneria

La certificazione ed il controllo della produzione di filtri respiratori per gas: metodologia e strumentazione impiegata per le prove di verifica e analisi dei risultati ottenuti

G. Zambelli^{1,2,3}, T. Chioccini^{1,2}, F. Banfi⁴, D. Muraglia^{1,2}, A. Montesanto⁴, S. Galimberti⁴, C. Marchi^{1,2}, S. Pelosi⁴, D. Di Pietrantonio^{1,3}

⁴ Italcert s.r.l.

¹ Laboratori Protex S.p.A., Gruppo Laboratori Protex

² Lavoro e Ambiente s.r.l., Gruppo Laboratori Protex

³ Protex Italia S.p.A., Gruppo Laboratori Protex

Rischi chimico/fisici per l'apparato respiratorio

Esposizione acuta

Sostanze irritanti, nocive, tossiche

Esposizione cronica

Sostanze cancerogene, mutagene, teratogene

Atmosfere asfissianti

Concentrazione O₂

Effetti sulla salute

21 %	Concentrazione ideale di ossigeno
19,5 %	Minimo livello accettabile
16 – 19,5 %	Possibili difficoltà respiratorie, perdita di controllo della motricità, diminuzione capacità lavorativa
12 – 16 %	Aumento respirazione, affaticamento, perdita capacità valutative
8 – 12 %	Perdita di coscienza, nausea e vomito, cianosi
6 – 8 %	 Permanenza di 4-5 minuti: possibilità di recupero Permanenza di 6 minuti: fatale al 50 % Permanenza di 8 minuti: fatale al 100 %
4 – 6 %	Coma in pochi secondi, morte

Ambienti confinati

- Aree contaminate
- Sale operatorie
- Cabine di verniciatura

- Luoghi trafficati
- Aree incendiate
- Scenari bellici

La marcatura CE e la normativa vigente

La direttiva 89/686/CEE suddivide i D.P.I. in tre categorie a seconda del percorso che il fabbricante deve seguire per poter apporre la marcature CE sui D.P.I prima di metterli in commercio

Categoria III

- L'Organismo Notificato, autorizzato dall'Ente di Controllo, verifica e approva il progetto
- L'Organismo Notificato controlla periodicamente la produzione

Categoria II

 L'Organismo Notificato interviene solo per la verifica e l'approvazione del progetto

Categoria I

 Non è previsto l'intervento dell'Organismo Notificato

La marcatura CE e la normativa vigente

Tutti i D.P.I. per le vie respiratorie sono classificati «D.P.I. di Terza Categoria»

Categoria III

- L'Organismo Notificato, autorizzato dall'Ente di Controllo, verifica e approva il progetto
- L'Organismo Notificato controlla periodicamente la produzione

Ente di Controllo

Organismo Notificato

D.P.I. per le vie respiratorie

Facciale filtrante

Respiratore autonomo

Autorespiratore

D.P.I. per le vie respiratorie

Semimaschera

Maschera intero facciale

La marcatura CE e la normativa vigente

Norme vigenti in materia di D.P.I. per le vie respiratorie (elenco non esaustivo)						
UNI EN 136:2000	Apparecchi di protezione delle vie respiratorie - Maschere intere - Requisiti, prove, marcatura	UNI EN 405:2009	Dispositivi di protezione delle vie respiratorie - Semimaschere filtranti antigas o antigas e antipolvere dotate di valvole - Requisiti, prove, marcatura			
UNI EN 137:2007	Dispositivi di protezione delle vie respiratorie - Autorespiratori a circuito aperto ad aria compressa con maschera intera - Requisiti, prove, marcatura	UNI EN 529:2006	Dispositivi di protezione delle vie respiratorie - Raccomandazioni per la selezione, l'uso, la cura e la manutenzione - Documento guida			
UNI EN 140:2000	Apparecchi di protezione delle vie respiratorie - Semimaschere e quarti di maschera - Requisiti, prove, marcatura	UNI EN 12941: 2009	Dispositivi di protezione delle vie respiratorie - Elettrorespiratori a filtro completi di elmetto o cappuccio - Requisiti, prove, marcatura			
UNI EN 143:2007	Apparecchi di protezione delle vie respiratorie - Filtri antipolvere - Requisiti, prove, marcatura	UNI EN 12942:2009	Dispositivi di protezione delle vie respiratorie - Elettrorespiratori a filtro completi di maschere intere, semimaschere o quarti di maschere - Requisiti, prove, marcatura			
UNI EN 148-1:2000	Apparecchi di protezione delle vie respiratorie - Filettature per facciali - Raccordo filettato normalizzato	UNI EN 14387:2008	Dispositivi di protezione delle vie respiratorie - Filtri antigas e filtri combinati - Requisiti, prove, marcatura			
UNI EN 148-2:2000	Apparecchi di protezione delle vie respiratorie - Filettature per facciali - Raccordo con filettatura centrale	EN 14529:2005	Respiratory protective devices - Self-contained open- circuit compressed air breathing apparatus with half mask designed to include a positive pressure lung governed demand valve for escape purposes only			
UNI EN 148-3:2000	Apparecchi di protezione delle vie respiratorie - Filettature per facciali - Raccordo filettato M 45 x 3	UNI EN 14593-1:2005	Apparecchi di protezione delle vie respiratorie - Respiratori ad aria compressa alimentati dalla linea con erogatore a domanda - Parte 1: Apparecchi con maschera intera - Requisiti, prove, marcatura			
UNI EN 149:2009	Dispositivi di protezione delle vie respiratorie - Semimaschere filtranti antipolvere - Requisiti, prove, marcatura	UNI EN 14593-2:2005	Apparecchi di protezione delle vie respiratorie - Respiratori ad aria compressa alimentati dalla linea con erogatore a domanda - Parte 2: Apparecchi con semimaschera a pressione positiva - Requisiti, prove, marcatura			
UNI EN 250:2014	Equipaggiamento per la respirazione - Autorespiratori per uso subacqueo a circuito aperto ad aria compressa - Requisiti, prove, marcatura	UNI EN 14594:2005	Apparecchi di protezione delle vie respiratorie - Respiratori ad aria compressa, a flusso continuo, alimentati dalla linea - Requisiti, prove, marcatura			

ITALCERT s.r.l. effettua verifiche per l'approvazione e controlli periodici di produzione sui D.P.I. per le vie respiratorie.

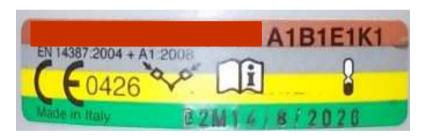
Le principali prove eseguite dall'Organismo di Controllo sono le seguenti:

ISPEZIONE VISIVA: il filtro viene visionato per valutare eventuali problematiche legate alla marcatura e alle indicazioni fornite dal costruttore. Il filtro viene ispezionato dopo le prove di condizionamento meccanico per poter osservare eventuali rotture o perdite di carbone attivo.

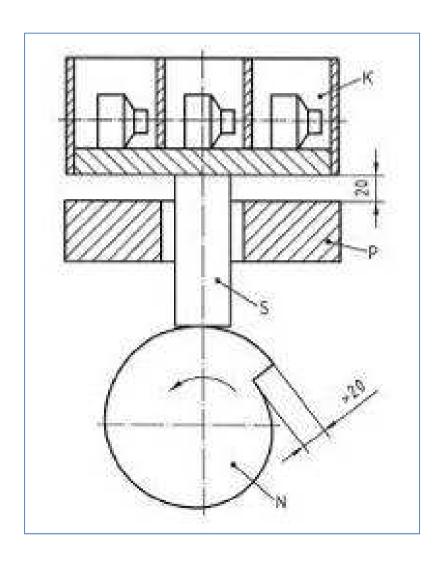
Classificazione dei D.P.I. per l'apparato respiratorio

Marcatura per i filtri antigas e/o antipolvere UNI FN 14387:2008 e UNI FN 143:2007

UNI EN 14387:2008 E UNI EN 143:2007				
Tipo	Colore	Campi di impiego		
Α	Marrone	Gas e vapori organici con punto di ebollizione superiore a 65°C		
В	Grigio	Gas e vapori inorganici		
E	Giallo	Anidride solforosa e altri gas e vapori acidi		
К	Verde	Ammoniaca e derivati organici		
AX	Marrone	Gas e vapori organici con punto di ebollizione inferiore a 65°C		
SX	Viola	Sostanze specificatamente indicate		
Hg	Rosso	Vapori di mercurio		
NO	Blu	Fumi azotati		
1	Arancione	Iodio		
со	Nero	Monossido di carbonio		
Р	Bianco	Polveri, fumi e nebbi		



Classificazione dei D.P.I. per l'apparato respiratorio



Classe di protezione per i dispositivi antigas non assistiti UNI EN 14387:2008		
Filtri per semimaschere o maschere intere	Concentrazione massima	
1	Per tenore di gas inferiore a 0,1% del volume	
2	Per tenore di gas compreso tra 0,1% e 0,5% in volume	
3	Per tenore di gas compreso tra 0,5% e 1,0% in volume	

La suddivisione in 3 classi è presente, seppur con differenze nelle prestazioni, anche per i dispositivi antipolvere non assistiti, i dispositivi a ventilazione assistita e forzata

RESISTENZA MECCANICA (M.S.):

il filtro viene posto sotto sforzo meccanico da un pistone che sollecita meccanicamente il filtro 100 volte in un minuto per una durata di 20 minuti.

Su tutti i campioni di prova

CONDIZIONAMENTO TERMICO (T.C.):

il filtro viene posto per 24 ore ad una temperatura di 70 °C e 24 ore ad una temperatura di -30 °C.

Su tutti i campioni di prova

RESISTENZA RESPIRATORIA:

il filtro viene testato a flussi continui di 35 l/min o 90 l/min per verificarne la funzionalità, in condizioni tali da non creare fenomeni di condensazione. Su 4 campioni per flusso

VERIFICA DI PENETRAZIONE ED INTASAMENTO:

viene testata la resistenza del filtro alle polveri con due tipi di aerosol differenti per escludere problemi di penetrazione degli inquinanti o intasamento del filtro. Su **2** campioni

CAPACITA' DI RESISTENZA DEI FILTRI AI GAS o CAPACITA' DEI GAS:

il filtro viene esposto ad una concentrazione nota di gas per verificarne la resistenza nel tempo.

EUROPEAN STANDARD NORME EUROPÉENNE LA JANUARY 2004

HAT JANUARY 2005

DE 13-30-30

Superade EN 1-38T-2004

English Verlain

Respiratory protective devices - Gas filter(s) and combined filter(s) - Requirements, testing, marking

Aprecés de protectio requirement (or 10 marking) and combined filter(s) - Requirements, testing, marking

Aprecés de protectio requirement (or 10 marking)

CON mention se touties service que de l'excitact (or 10 marking)

The Exprese en touties service que de l'excitact (or 10 marking)

The Exprese en touties service que de l'excitact (or 10 marking)

The Exprese en touties service que de l'excitact (or 10 marking)

The Exprese excitact en de la tres de discussion (or 10 marking)

The Exprese excitact en de la tres de discussion (or 10 marking)

The Exprese excitact en de la tres de discussion of values, feligier, format, Assentin et al tres depute excitact (or 10 marking)

CON mention excitact en de la tres de discussion of values, feligier, format, forma

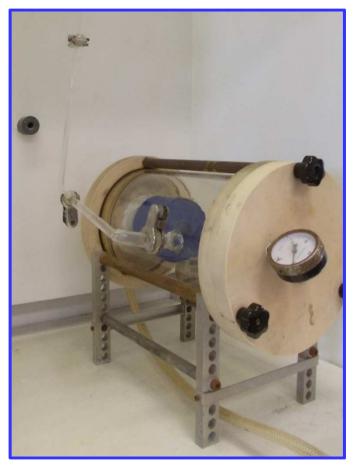
LABORATORI PROTEX S.p.A. collabora con ITALCERT s.r.l. per l'esecuzione di questa prova dal 2007, seguendo le istruzioni riportate nella norma di riferimento UNI EN 14387:2008

Prova di capacità dei gas UNI EN 14387:2008

La prova di capacità dei gas ha il compito di verificare la resistenza dei filtri per un determinato periodo di tempo, a concentrazioni, flussi di gas e condizioni ambientali note, differenti in base al tipo di filtro.

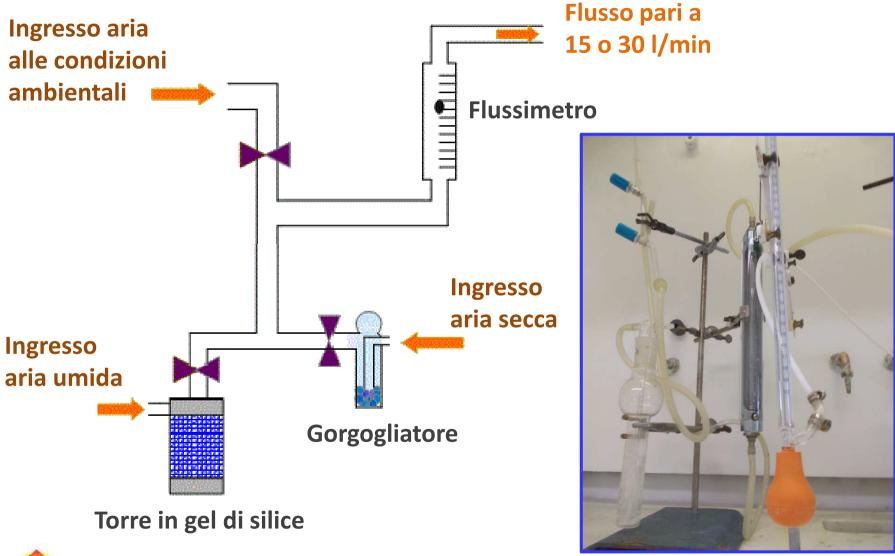
Il filtro si definisce rotto nel momento in cui non riesce più a proteggere dal gas: tale momento -breakthrough- viene identificato quando il gas di prova attraversa il filtro e supera una determinata concentrazione.

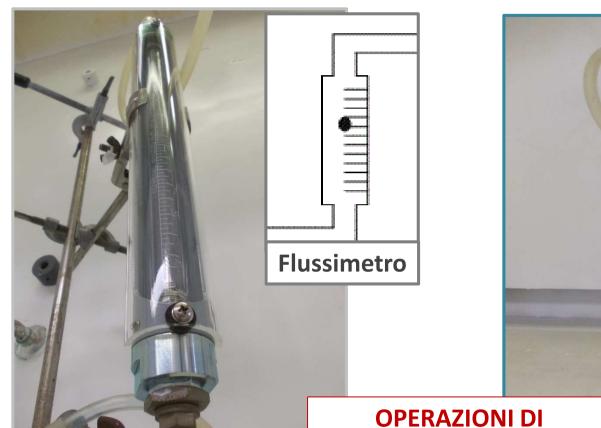
La prova viene superata positivamente se tutti e tre gli esemplari di prova non si rompono prima del tempo previsto.



Ingresso del gas alle condizioni previste dalla norma Flusso pari a **Filtro** 15 o 30 l/min Camera a tenuta stagna **Sensore** 00 **Pompa**

Rischi per l'apparato respiratorio





REGOLAZIONI DI

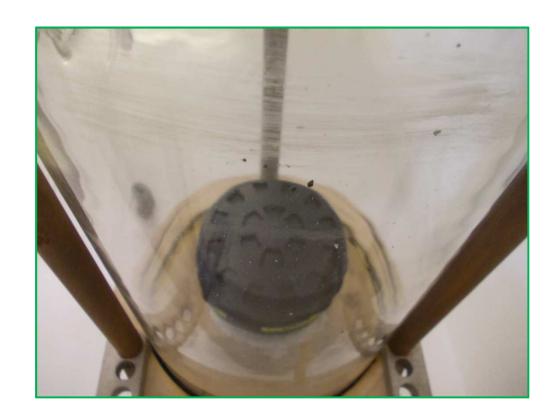
REGOLAZIONE

DELL'UMIDITA'

E DEL FLUSSO DELL'ARIA

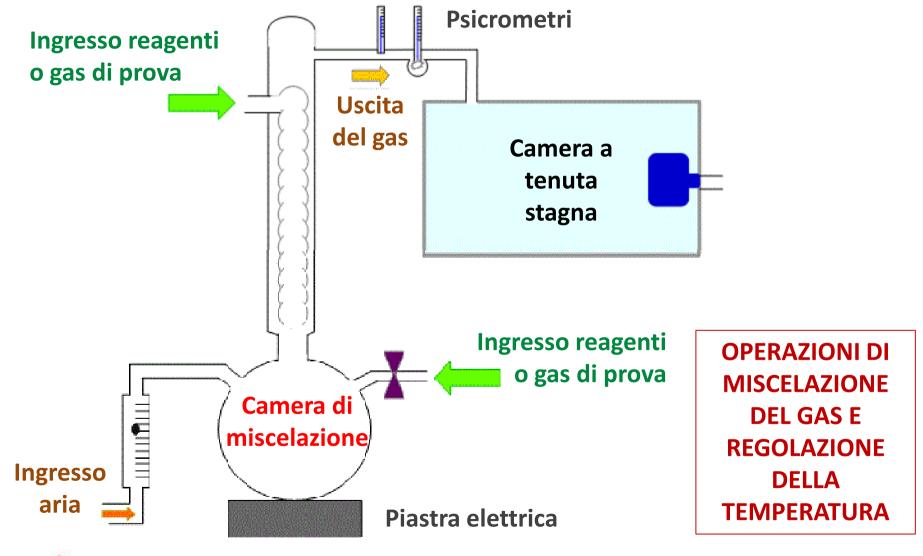
ASPIRATA

Gorgogliatore

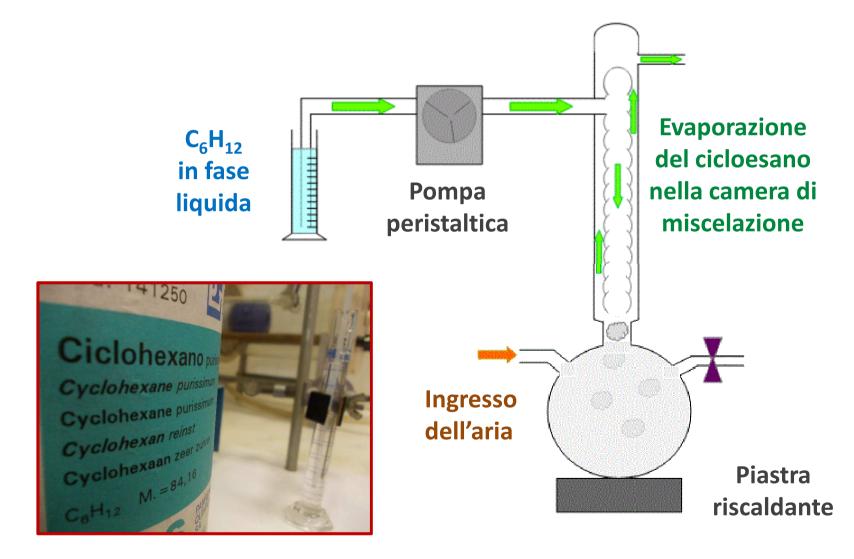


CONDIZIONI STANDARD PER LE PROVE DI CAPACITA'

- Flusso aria: 30 l/min


- Temperatura: 20 °C

- Umidità relativa: 70%



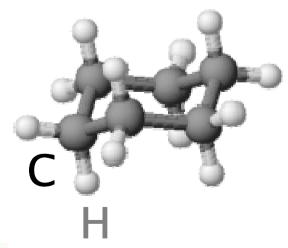
Filtro A Cicloesano C₆H₁₂

CLASSE 1

Tempo di superamento della prova: 70 min Concentrazione del gas: 3,5 mg/l - 0,1 % vol.Concentrazione di rottura: 10 ml/m3

CLASSE 2

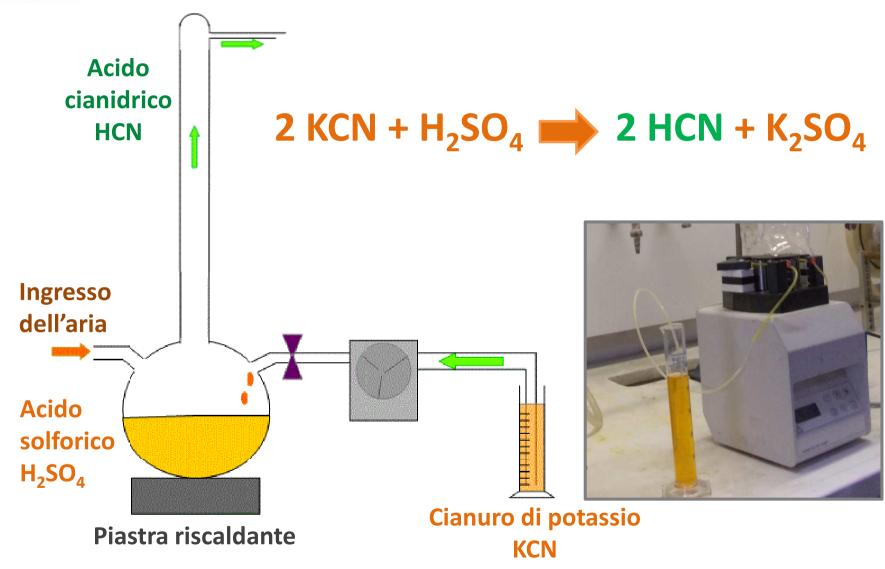
Tempo di superamento della prova: 35 min Concentrazione del gas: 17,5 mg/l – 0,5 % vol.


Concentrazione di rottura: 10 ml/m3

CLASSE 3

Tempo di superamento della prova: 65 min Concentrazione del gas: 28,0 mg/l – 0,8 % vol.

Concentrazione di rottura: 10 ml/m3



Filtro B

Gas #1

Acido cianidrico

HCN

CLASSE 1

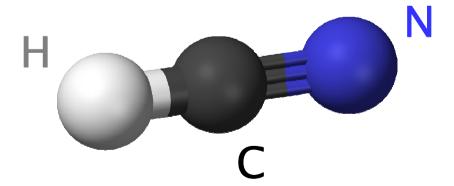
Tempo di superamento della prova:25 min

Concentrazione del gas: 1,1 mg/l

Concentrazione di rottura: 10 ml/m3

CLASSE 2

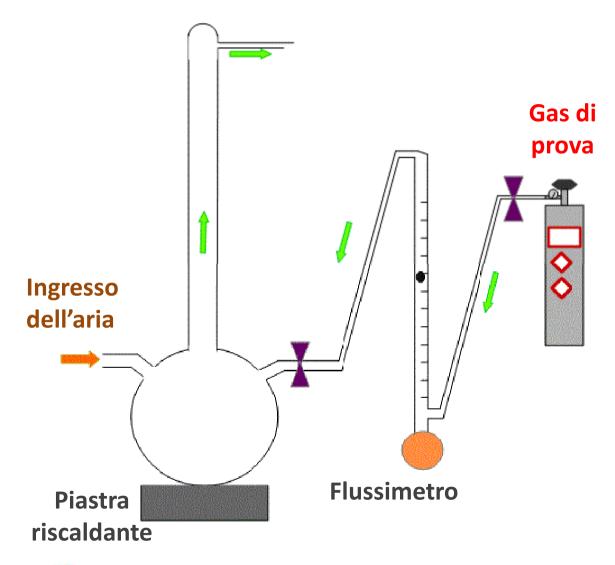
Tempo di superamento della prova: 25 min


Concentrazione del gas: 5,6 mg/l

Concentrazione di rottura: 10 ml/m3

CLASSE 3

Tempo di superamento della prova: 25 min


Concentrazione del gas: 11,2 mg/l Concentrazione di rottura: 10 ml/m3

Filtro B

Gas #2

Cloro

CLASSE 1

Tempo di superamento della prova:20 min

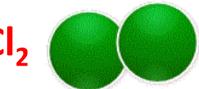
Concentrazione del gas: 3,0 mg/l

Concentrazione di rottura: 0,5 ml/m3

CLASSE 2

Tempo di superamento della prova: 20 min

Concentrazione del gas: 15,0 mg/l


Concentrazione di rottura: 0,5 ml/m3

CLASSE 3

Tempo di superamento della prova: 20 min

Concentrazione del gas: 30,0 mg/l

Concentrazione di rottura: 0,5 ml/m3

Filtro B

Gas #3

Acido solfidrico

H₂S

CLASSE 1

Tempo di superamento della prova:40 min

Concentrazione del gas: 1,4 mg/l

Concentrazione di rottura: 10 ml/m3

CLASSE 2

Tempo di superamento della prova: 40 min

Concentrazione del gas: 7,1 mg/l

Concentrazione di rottura: 10 ml/m3

CLASSE 3

Tempo di superamento della prova: 60 min

Concentrazione del gas: 14,2 mg/l

Concentrazione di rottura: 10 ml/m3

Filtro E

Anidride solforosa

SO₂

CLASSE 1

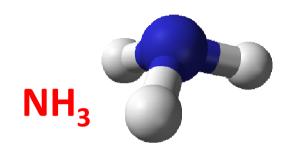
Tempo di superamento della prova:20 min

Concentrazione del gas: 2,7 mg/l Concentrazione di rottura: 5 ml/m3

CLASSE 2

Tempo di superamento della prova: 20 min

Concentrazione del gas: 13,3 mg/l Concentrazione di rottura: 5 ml/m3


CLASSE 3

Tempo di superamento della prova: 30 min

Concentrazione del gas: 26,6 mg/l Concentrazione di rottura: 5 ml/m3

SO₂

Filtro K

Ammoniaca

NH₃

CLASSE 1

Tempo di superamento della prova:50 min

Concentrazione del gas: 0,7 mg/l

Concentrazione di rottura: 25 ml/m3

CLASSE 2

Tempo di superamento della prova: 40 min

Concentrazione del gas: 3,5 mg/l

Concentrazione di rottura: 25 ml/m3

CLASSE 3

Tempo di superamento della prova: 60 min

Concentrazione del gas: 7,0 mg/l

Concentrazione di rottura: 25 ml/m3

Filtro NO

Ossidi di azoto
NO - NO₂

NO - MONOSSIDO DI AZOTO

Tempo di superamento della prova:20 min

Concentrazione del gas: 3,1 mg/l

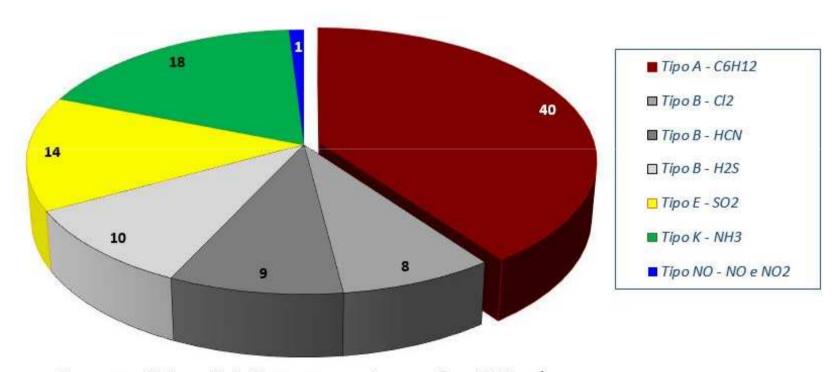
Concentrazione di rottura: 5 ml/m3

NO2 - DIOSSIDO DI AZOTO

Tempo di superamento della prova: 20 min

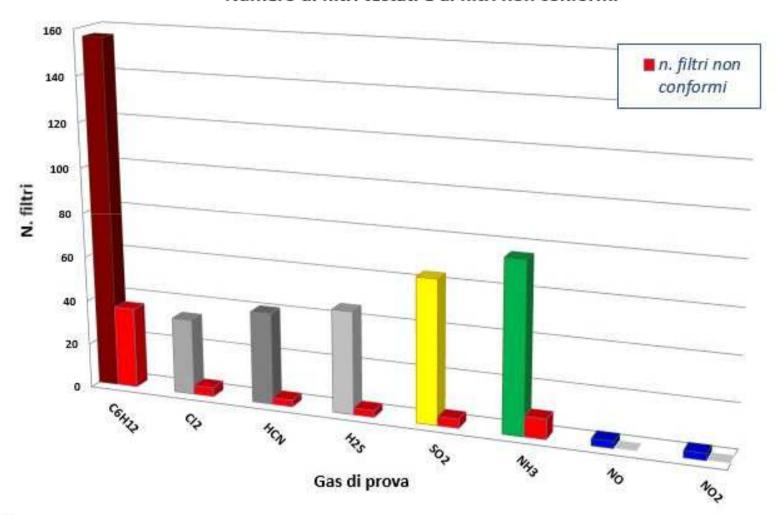
Concentrazione del gas: 13,3 mg/l Concentrazione di rottura: 5 ml/m3 NO

NO₂



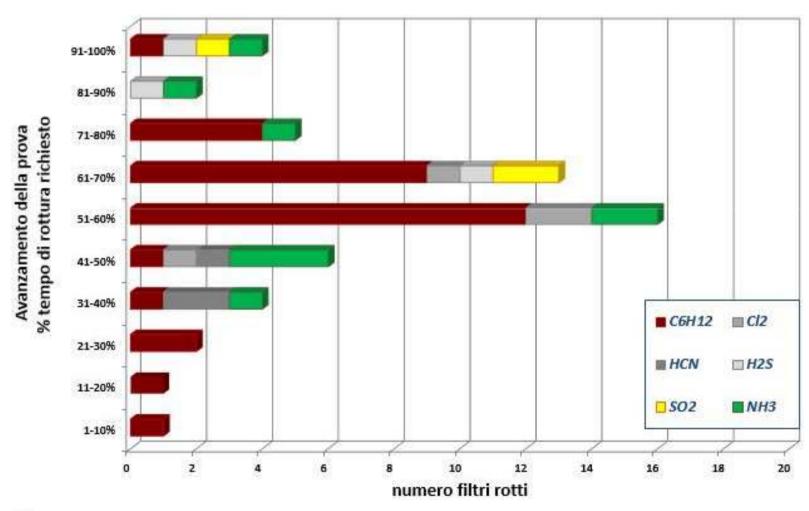
Analisi statistica dei risultati dei test di capacità

Circa 500 filtri testati nel periodo 2007-2014

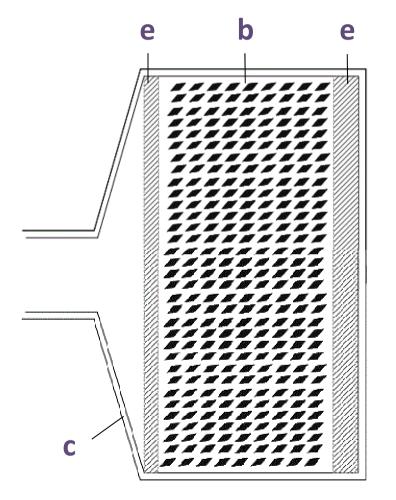

Percentuali di analisi effettuate per ciascun tipo di filtro/gas



Numero di filtri testati e di filtri non conformi



Filtri non conformi - analisi del tempo di rottura

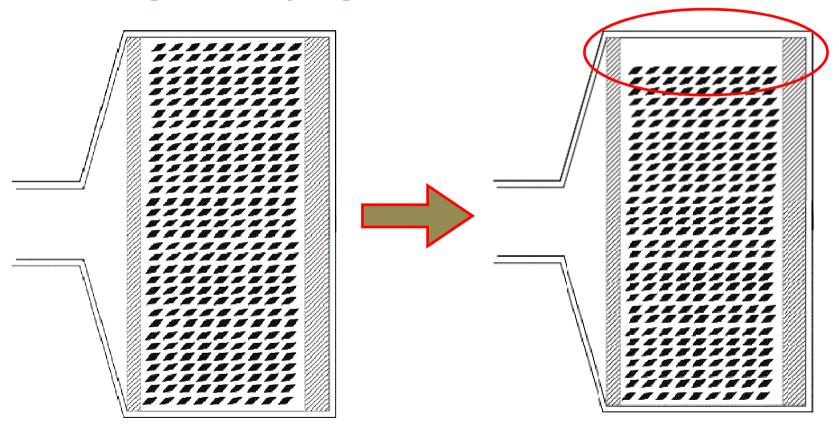



b. Carboni attivi

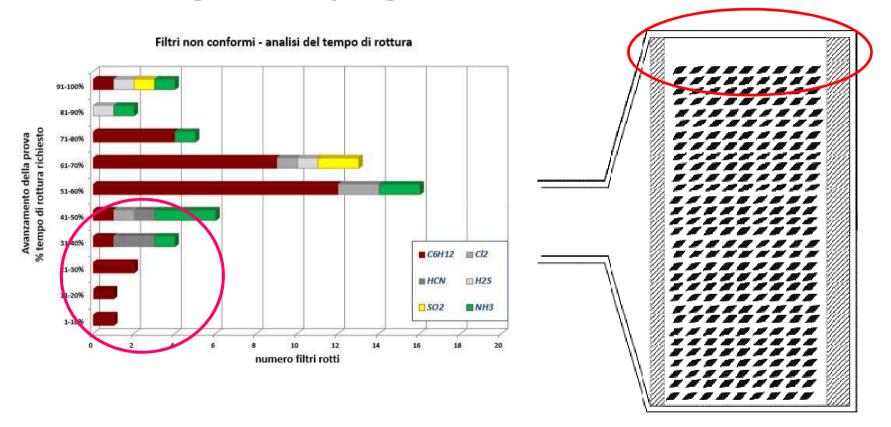
c. Custodia

e. Filtro antipolvere

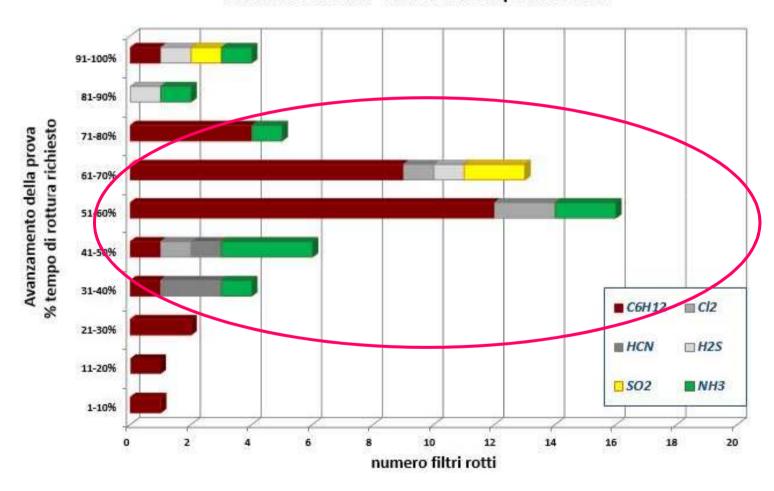
Problemi nella disposizione dei carboni attivi

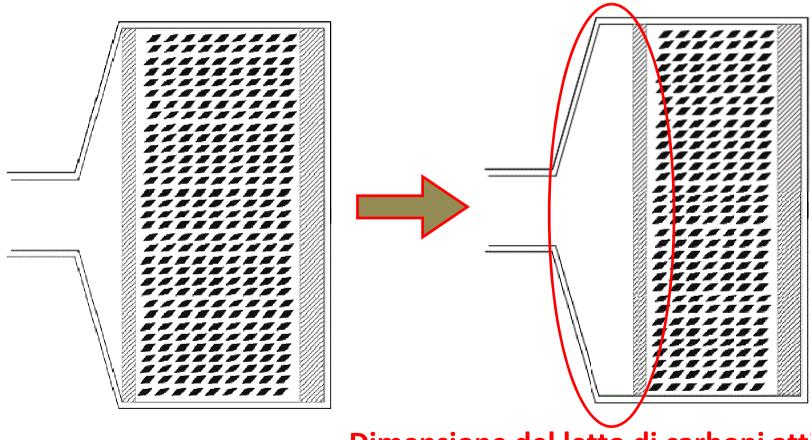

- in fase di progettazione
- a seguito della prova di resistenza meccanica

Rotture legate alla progettazione/realizzazione

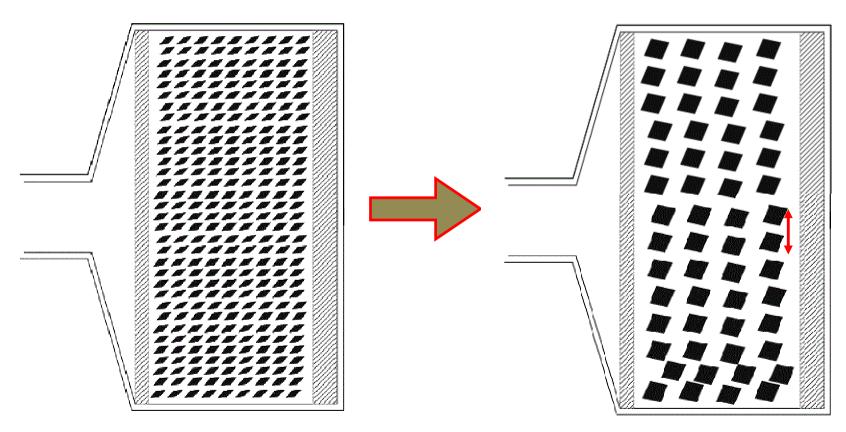

Quantità di carboni attivi

Rotture legate alla progettazione/realizzazione


Quantità di carboni attivi

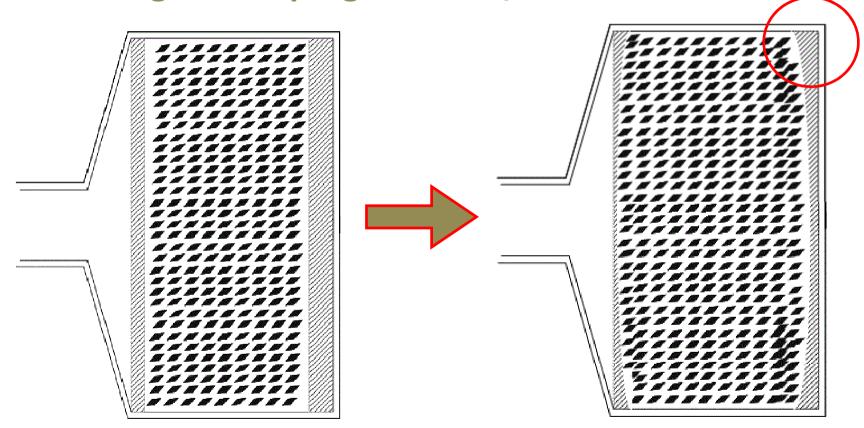

Filtri non conformi - analisi del tempo di rottura

Rotture legate alla progettazione/realizzazione



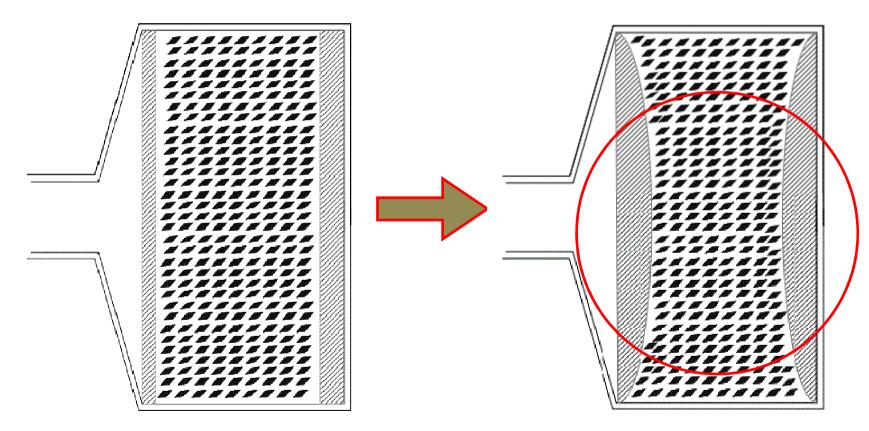
Dimensione del letto di carboni attivi

Rotture legate alla progettazione/realizzazione

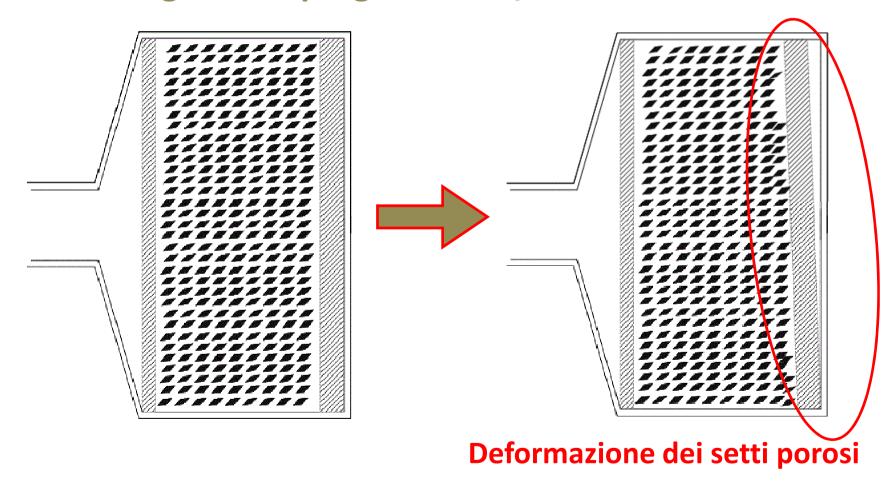


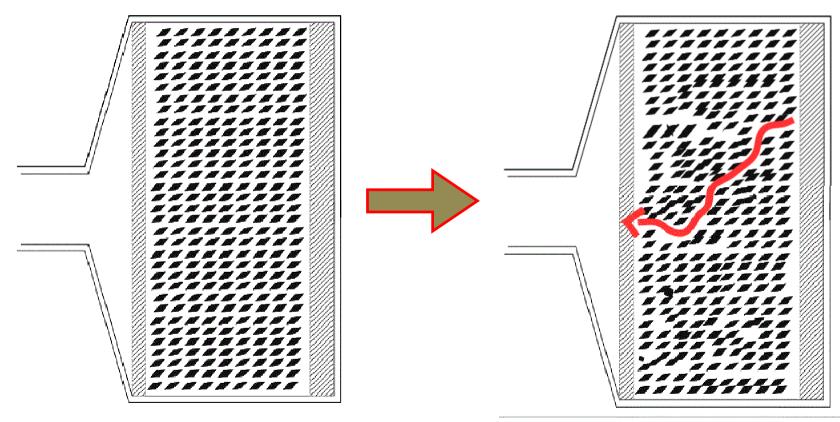
Granulometria dei carboni attivi ed interstizi tra i grani

Rotture legate alla progettazione/realizzazione

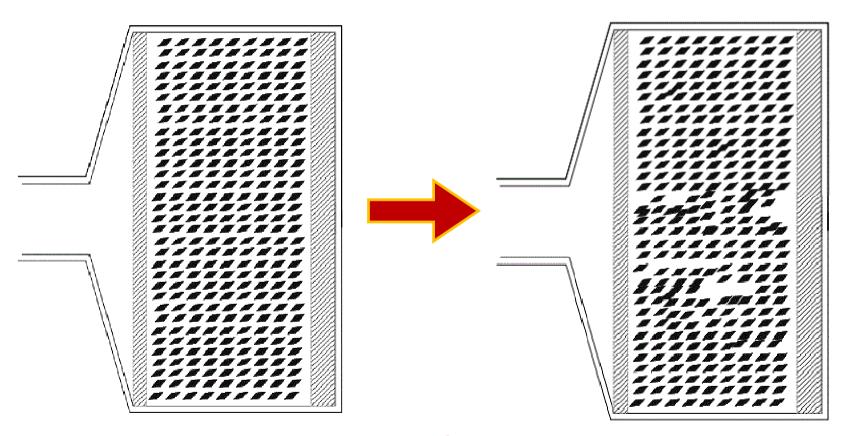

Deformazione dei setti porosi

Rotture legate alla progettazione/realizzazione

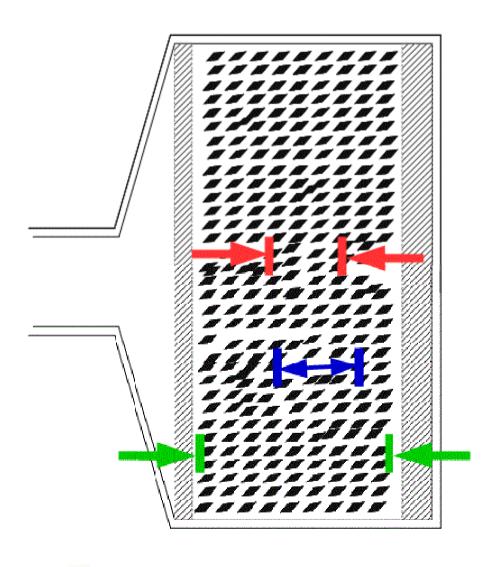

Detormazione dei setti porosi


Rotture legate alla progettazione/realizzazione

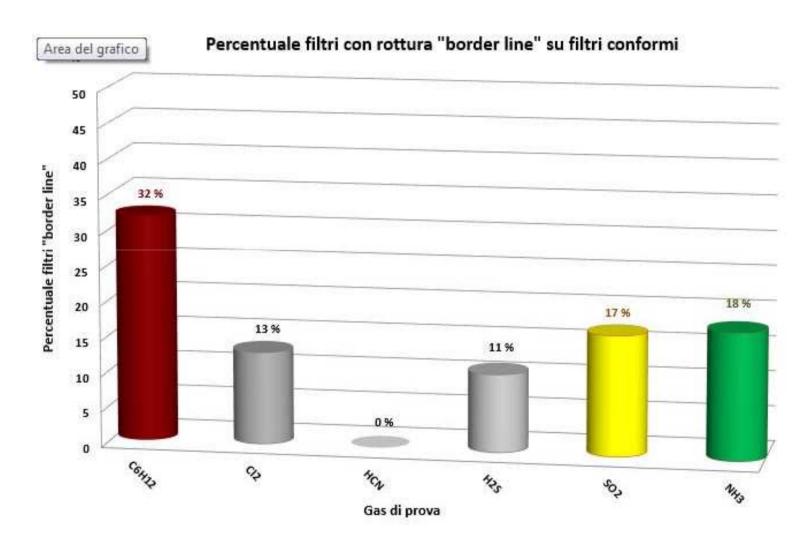
Rotture legate alla progettazione/realizzazione


Stabilità dei carboni attivi «difetti di riempimento» con conseguente «shortcut»

Rotture legate alla prova di resistenza meccanica



Creazione di interstizi e diminuzione dello spessore di carboni attivi


Riduzione dello spessore teorico

Creazione di spazi vuoti

Spessore teorico dello strato di carboni attivi

Conclusioni

- I Dispositivi di Protezione per le vie respiratorie sono fondamentali per la salute del lavoratore, sia nel breve che nel lungo termine (D.P.I. di III Categoria)
- La certificazione di tali dispositivi è effettuata da un Organismo Notificato per conto dell'Ente di Controllo
- Tra le diverse prove necessarie alla validazione dei filtri antigas ricopre un ruolo importante la prova di capacità di resistenza dei filtri ai gas, normata dalla UNI EN 14387:2008

Conclusioni

- Dai test effettuati è emerso un numero maggiore di filtri rotti per i filtri di classe A (19%), ovvero quelli utilizzati per gas e vapori organici con punto di ebollizione superiore a 65°C
- Le prove sugli altri filtri danno esito negativo con una percentuale media del 10%
- La maggior parte delle rotture avviene a metà del periodo di completamento della prova: questo può essere spiegato sia da difetti nella progettazione e realizzazione dei modelli che dallo spostamento dei carboni attivi all'interno del filtro durante la prova di resistenza meccanica
- Prolungando il tempo della prova di capacità, circa il 20% dei filtri non resiste prolungando l'esposizione per un ¼ del tempo di prova

Conclusioni

Considerando quindi quanto è emerso dalle analisi effettuate, risulta ancora più fondamentale il corretto utilizzo dei D.P.I. per le vie respiratorie secondo le norme fornite dai costruttori

GRAZIE PER L'ATTENZIONE

Tommaso Chioccini

LAVORO E AMBIENTE s.r.l. GRUPPO LABORATORI PROTEX Via Cartesio 30 - 47122 Forlì (FC) Tel. 0543.724429

LABORATORI PROTEX S.p.A.
GRUPPO LABORATORI PROTEX
Via Fondo Ausa 40 – 47891 Dogana (RSM)
Tel. 0549.970100

www.protexgroup.com

Elenco fisici professionisti ANFeA, sezione A, settore «Fisica della Terra, dell'ambiente e del territorio»

Dirigente Gestione Rischio Amianto Tecnico Competente in Acustica Ambientale

Socio di ANFeA, AIDII, AIA

la-sercamp@protexgroup.com Lavoro e Ambiente s.r.l. – Laboratori Protex S.p.A. Gruppo Laboratori Protex

